データセット、データセット

投稿者: | 2016年9月25日

 VGGによる画像分類は面白い。もしデータセットがあれば医用画像で人間の認識を超える精度を出すこともできる気がする。特にCTでは、あっという間に人間を超える高精度を出してくれそうでこわい。もしもCTの読影をDeep Learningでやらせようとすると、いくつかの課題があるように感じられる。第1に、個人情報保護の問題、第2に、完備されているデータセットを作ることが難しい問題、第3に、自動運転のような安全性に関する問題がある。
 このうちで最も問題になるのは、データセットを作るところだと思う。もちろんまず個人情報保護をきちんと解消しないとデータセットは作れなが、安全性に対する不安は、一旦高品質な分類器が作られ始めると、世間の反応は変わっていくのではないかと思う。今現在でも、レポート文章とレポート添付画像を使ってCNNとLSTM組み合わせて学習させれば相当なところまでやれるのかも知れない。国内でこういう事をこっそり研究してそうなところは富士フィルムさんかな。放射線科医はこの問題についてどう考えているのだろう。

 雑多な資料をながめていて思ったのは、ImageNetという団体が主催するコンテストによって画像認識がどんどん進化していったということ。そのようなコンテストが色々な領域で生まれて、やがて医療をとりまく環境も少しずつ変わっていくのでしょう。あるいは、オープンなデータセットが作られないまま謎の方向へ進化していく道も薄っすらと想像されるが、そちらの方向はあまり望ましくないと個人的には思います。

コメントを残す

メールアドレスが公開されることはありません。 * が付いている欄は必須項目です